Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Protein Pept Lett ; 27(8): 801-807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32003653

RESUMO

BACKGROUND: Ionic complementary peptide EAK-16 has been studies for anticancer drug delivery application. This is a 16 residues, short sequence peptide has ability to trosnform into micro/nanoparticle via self-assembly. However, it is still not clear that how this can bind with cell membrane to induce membrane leakage or delivering their cargo inside cell membrane. OBJECTIVE: The main objective of this work was to understand behaviour of secondary structure conformation of peptide in solution and at lipid membrane interfaces and membrane permeability of synthetic ionic complementary peptide EAK-16. The corresponding secondary structure conformation was evaluated. METHODS: We performed biophysical investigation to probe the interaction of synthesised ionic complementary peptide (EAK-16) with dimyristoylphospholcholine (DMPC) and dimyristoylphosphoserine (DMPS) membrane interfaces. The folding behaviours of EAK-16 were studied with Circular Dichroism (CD) spectroscopy. Membrane leakage with peptide was confirmed with calcein leakage assay. RESULTS: Our finding of this study showed that in aqueous phase EAK-16 was predominantly folded into ß-sheets. The temperature could alter the ß-sheets. However, in DMPC and DMPS membrane interfaces, EAK-16 adopted helical conformation. EAK-16 has preference in perturbing anionic compared Zwitterionic lipid vesicles. This study proposed that hydrophobic grooves of EAK-16 might be a key in the association with lipid bilayers. Secondly, a charge distribution of ionic residues would also support the orientation at lipid bilayers. This peptide membrane association would facilitate the membrane destabilisation. CONCLUSION: This study demonstrated the supporting evidence that EAK-16 could interact with lipid membranes and conforming to helical structure, while the helical conformation induced the lipid membrane leakage. Overall, this study provides a physical rationale that ionic complementary peptide can be a useful tool for designing and development of novel antibiotics and anticancer agents along its previous drug delivery applications.


Assuntos
Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Peptídeos/química , Unitiol/química , Conformação Proteica em Folha beta
2.
Biomolecules ; 10(2)2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033229

RESUMO

: High arsenic (As) levels in food and drinking water, or under some occupational conditions, can precipitate chronic toxicity and in some cases cancer. Millions of people are exposed to unacceptable amounts of As through drinking water and food. Highly exposed individuals may develop acute, subacute, or chronic signs of poisoning, characterized by skin lesions, cardiovascular symptoms, and in some cases, multi-organ failure. Inorganic arsenite(III) and organic arsenicals with the general formula R-As2+ are bound tightly to thiol groups, particularly to vicinal dithiols such as dihydrolipoic acid (DHLA), which together with some seleno-enzymes constitute vulnerable targets for the toxic action of As. In addition, R-As2+-compounds have even higher affinity to selenol groups, e.g., in thioredoxin reductase that also possesses a thiol group vicinal to the selenol. Inhibition of this and other ROS scavenging seleno-enzymes explain the oxidative stress associated with arsenic poisoning. The development of chelating agents, such as the dithiols BAL (dimercaptopropanol), DMPS (dimercapto-propanesulfonate) and DMSA (dimercaptosuccinic acid), took advantage of the fact that As had high affinity towards vicinal dithiols. Primary prevention by reducing exposure of the millions of people exposed to unacceptable As levels should be the prioritized strategy. However, in acute and subacute and even some cases with chronic As poisonings chelation treatment with therapeutic dithiols, in particular DMPS appears promising as regards alleviation of symptoms. In acute cases, initial treatment with BAL combined with DMPS should be considered.


Assuntos
Antídotos/uso terapêutico , Intoxicação por Arsênico/tratamento farmacológico , Arsênio/toxicidade , Quelantes/uso terapêutico , Animais , Antídotos/química , Antídotos/farmacologia , Arsênio/efeitos adversos , Intoxicação por Arsênico/etiologia , Intoxicação por Arsênico/metabolismo , Arsenicais/efeitos adversos , Quelantes/química , Quelantes/farmacologia , Dimercaprol/análogos & derivados , Dimercaprol/farmacologia , Dimercaprol/uso terapêutico , Água Potável/efeitos adversos , Humanos , Modelos Moleculares , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Succímero/química , Succímero/farmacologia , Succímero/uso terapêutico , Unitiol/química , Unitiol/farmacologia , Unitiol/uso terapêutico , Poluentes Químicos da Água/efeitos adversos , Poluentes Químicos da Água/toxicidade
3.
Colloids Surf B Biointerfaces ; 160: 281-288, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946063

RESUMO

GM1 has generally been considered as the major receptor that binds to cholera toxin subunit B (CTB) due to its low dissociation constant. However, using a unique nanocube sensor technology, we have shown that CTB can also bind to other glycolipid receptors, fucosyl-GM1 and GD1b. Additionally, we have demonstrated that GM2 can contribute to CTB binding if present in a glycolipid mixture with a strongly binding receptor (GM1/fucosyl-GM1/GD1b). This hetero-multivalent binding result was unintuitive because the interaction between CTB and pure GM2 is negligible. We hypothesized that the reduced dimensionality of CTB-GM2 binding events is a major cause of the observed CTB binding enhancement. Once CTB has attached to a strong receptor, subsequent binding events are confined to a 2D membrane surface. Therefore, even a weak GM2 receptor could now participate in second or higher binding events because its surface reaction rate can be up to 104 times higher than the bulk reaction rate. To test this hypothesis, we altered the surface reaction rate by modulating the fluidity and heterogeneity of the model membrane. Decreasing membrane fluidity reduced the binding cooperativity between GM2 and a strong receptor. Our findings indicated a new protein-receptor binding assay, that can mimic complex cell membrane environment more accurately, is required to explore the inherent hetero-multivalency of the cell membrane. We have thus developed a new membrane perturbation protocol to efficiently screen receptor candidates involved in hetero-multivalent protein binding.


Assuntos
Toxina da Cólera/química , Gangliosídeo G(M1)/química , Gangliosídeo G(M2)/química , Bicamadas Lipídicas/química , Sítios de Ligação , Sequência de Carboidratos , Membrana Celular/química , Toxina da Cólera/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Gangliosídeo G(M1)/metabolismo , Gangliosídeo G(M2)/metabolismo , Cinética , Bicamadas Lipídicas/metabolismo , Nanopartículas Metálicas/química , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ligação Proteica , Dióxido de Silício/química , Termodinâmica , Unitiol/química , Unitiol/metabolismo
4.
Proteins ; 85(7): 1336-1350, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28380689

RESUMO

The molecular details of the association between the human Fyn-SH3 domain, and the fragment of 18.5-kDa myelin basic protein (MBP) spanning residues S38-S107 (denoted as xα2-peptide, murine sequence numbering), were studied in silico via docking and molecular dynamics over 50-ns trajectories. The results show that interaction between the two proteins is energetically favorable and heavily dependent on the MBP proline-rich region (P93-P98) in both aqueous and membrane environments. In aqueous conditions, the xα2-peptide/Fyn-SH3 complex adopts a "sandwich""-like structure. In the membrane context, the xα2-peptide interacts with the Fyn-SH3 domain via the proline-rich region and the ß-sheets of Fyn-SH3, with the latter wrapping around the proline-rich region in a form of a clip. Moreover, the simulations corroborate prior experimental evidence of the importance of upstream segments beyond the canonical SH3-ligand. This study thus provides a more-detailed glimpse into the context-dependent interaction dynamics and importance of the ß-sheets in Fyn-SH3 and proline-rich region of MBP. Proteins 2017; 85:1336-1350. © 2017 Wiley Periodicals, Inc.


Assuntos
Bicamadas Lipídicas/química , Proteína Básica da Mielina/química , Proteínas Proto-Oncogênicas c-fyn/química , Água/química , Domínios de Homologia de src , Sequência de Aminoácidos , Animais , Sítios de Ligação , Dimiristoilfosfatidilcolina/química , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Prolina/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Estrutura Terciária de Proteína , Termodinâmica , Unitiol/química
5.
Sci Rep ; 6: 22874, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27216038

RESUMO

Local changes in pH are known to significantly alter the state and activity of proteins and enzymes. pH variations induced by pulses propagating along soft interfaces (e.g. membranes) would therefore constitute an important pillar towards a physical mechanism of biological signaling. Here we investigate the pH-induced physical perturbation of a lipid interface and the physicochemical nature of the subsequent acoustic propagation. Pulses are stimulated by local acidification and propagate - in analogy to sound - at velocities controlled by the interface's compressibility. With transient local pH changes of 0.6 directly observed at the interface and velocities up to 1.4 m/s this represents hitherto the fastest protonic communication observed. Furthermore simultaneously propagating mechanical and electrical changes in the lipid interface are detected, exposing the thermodynamic nature of these pulses. Finally, these pulses are excitable only beyond a threshold for protonation, determined by the pKa of the lipid head groups. This protonation-transition plus the existence of an enzymatic pH-optimum offer a physical basis for intra- and intercellular signaling via sound waves at interfaces, where not molecular structure and mechano-enyzmatic couplings, but interface thermodynamics and thermodynamic transitions are the origin of the observations.


Assuntos
Lipídeos/química , Lipossomas Unilamelares/química , Acústica , Concentração de Íons de Hidrogênio , Prótons , Transdução de Sinais , Eletricidade Estática , Termodinâmica , Unitiol/química
6.
Soft Matter ; 12(13): 3165-76, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26934592

RESUMO

One of the hallmarks of Alzheimer's disease is the formation of protein plaques in the brain, which mainly consist of amyloid-ß peptides of different lengths. While the role of these plaques in the pathology of the disease is not clear, the mechanism behind peptide aggregation is a topic of intense research and discussion. Because of their simplicity, synthetic membranes are promising model systems to identify the elementary processes involved. We prepared unsaturated zwitterionic/anionic lipid membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (DMPS) at concentrations of POPC/3 mol% DMPS containing 0 mol%, 3 mol%, 10 mol%, and 20 mol% amyloid-ß25-35 peptides. Membrane-embedded peptide clusters were observed at peptide concentrations of 10 and 20 mol% with a typical cluster size of ∼11 µm. Cluster density increased with peptide concentration from 59 (±3) clusters per mm(2) to 920 (±64) clusters per mm(2), respectively. While monomeric peptides take an α-helical state when embedded in lipid bilayers at low peptide concentrations, the peptides in peptide clusters were found to form cross-ß sheets and showed the characteristic pattern in X-ray experiments. The presence of the peptides was accompanied by an elastic distortion of the bilayers, which can induce a long range interaction between the peptides. The experimentally observed cluster patterns agree well with Monte Carlo simulations of long-range interacting peptides. This interaction may be the fundamental process behind cross-ß sheet formation in membranes and these sheets may serve as seeds for further growth into amyloid fibrils.


Assuntos
Peptídeos beta-Amiloides/química , Bicamadas Lipídicas/química , Fragmentos de Peptídeos/química , Peptídeos beta-Amiloides/metabolismo , Ânions/química , Bicamadas Lipídicas/metabolismo , Microscopia , Método de Monte Carlo , Fragmentos de Peptídeos/metabolismo , Fosfatidilcolinas/química , Estrutura Secundária de Proteína , Unitiol/química , Difração de Raios X
7.
Soft Matter ; 12(1): 181-90, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26451711

RESUMO

Behavior of cationic tetra-p-guanidinoethylcalix[4]arene (CX1) and its building block, p-guanidinoethylphenol (mCX1) in model monolayer lipid membranes was investigated using all atom molecular dynamics simulations and surface pressure measurements. Members of two classes of lipids were taken into account: zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and anionic 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine sodium salt (DMPS) as models of eukaryotic and bacterial cell membranes, respectively. It was demonstrated that CX1 and mCX1 accumulate near the negatively charged DMPS monolayers. The adsorption to neutral monolayers was negligible. In contrast to mCX1, CX1 penetrated into the hydrophobic part of the monolayer. The latter effect, which is possible due to a flip-flop inversion of the CX1 orientation in the lipid layer compared to the aqueous phase, may be responsible for its antibacterial activity.


Assuntos
Calixarenos/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Dimiristoilfosfatidilcolina/química , Interações Hidrofóbicas e Hidrofílicas , Unitiol/química
8.
Soft Matter ; 12(5): 1444-51, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26646730

RESUMO

The peptide amyloid-ß (Aß) interacts with membranes of cells in the human brain and is associated with Alzheimer's disease (AD). The intercalation of Aß in membranes alters membrane properties, including the structure and lipid dynamics. Any change in the membrane lipid dynamics will affect essential membrane processes, such as energy conversion, signal transduction and amyloid precursor protein (APP) processing, and may result in the observed neurotoxicity associated with the disease. The influence of this peptide on membrane dynamics was studied with quasi-elastic neutron scattering, a technique which allows a wide range of observation times from picoseconds to nanoseconds, over nanometer length scales. The effect of the membrane integral neurotoxic peptide amyloid-ß, residues 22-40, on the in- and out-of-plane lipid dynamics was observed in an oriented DMPC/DMPS bilayer at 15 °C, in its gel phase, and at 30 °C, near the phase transition temperature of the lipids. Near the phase-transition temperature, a 1.5 mol% of peptide causes up to a twofold decrease in the lipid diffusion coefficients. In the gel-phase, this effect is reversed, with amyloid-ß(22-40) increasing the lipid diffusion coefficients. The observed changes in lipid diffusion are relevant to protein-protein interactions, which are strongly influenced by the diffusion of membrane components. The effect of the amyloid-ß peptide fragment on the diffusion of membrane lipids will provide insight into the membrane's role in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Bicamadas Lipídicas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Difusão , Dimiristoilfosfatidilcolina/química , Humanos , Bicamadas Lipídicas/química , Domínios e Motivos de Interação entre Proteínas , Unitiol/química
9.
Environ Sci Technol ; 49(2): 1165-72, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25513720

RESUMO

Silver nanoparticles (AgNP) are increasingly used as antimicrobials in consumer products. Subsequently released into aquatic environments, they are likely to come in contact with microbial communities like periphyton, which plays a key role as a primary producer in stream ecosystems. At present, however, very little is known about the effects of nanoparticles on processes mediated by periphyton communities. We assessed the effects of citrate-coated silver nanoparticles and silver ions (dosed as AgNO3) on five functional end points reflecting community and ecosystem-level processes in periphyton: photosynthetic yield, respiration potential, and the activity of three extracellular enzymes. After 2 h of exposure in experimental microcosms, AgNP and AgNO3 inhibited respiration and photosynthesis of periphyton and the activities of two of the three extracellular enzymes. Addition of a chelating ligand that complexes free silver ions indicated that, in most cases, toxicity of AgNP suspensions was caused by Ag(I) dissolved from the particles. However, these suspensions inhibited one of the extracellular enzymes (leucine aminopeptidase), pointing to a specific nanoparticle effect independent of the dissolved Ag(I). Thus, our results show that both silver nanoparticles and silver ions have potential to disrupt basic metabolic functions and enzymatic resource acquisition of stream periphyton.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Fotossíntese/efeitos dos fármacos , Prata/toxicidade , Poluentes da Água/análise , Quelantes/química , Ecossistema , Exposição Ambiental , Íons , Ligantes , Nanopartículas , Nanotecnologia , Rios , Nitrato de Prata/química , Nitrato de Prata/toxicidade , Unitiol/química
10.
J Colloid Interface Sci ; 418: 52-60, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24461817

RESUMO

Water-soluble gold nanoparticles functionalized by sodium 3-mercapto-1-propansulfonate (Au-3MPS) were synthesized with different Au/thiol molar ratios for their ability to interact with biomolecules. In particular, a synthetic glucocorticoid steroid, i.e. dexamethasone (DXM) was selected. Herein, the formation of the Au-3MPS/DXM bioconjugate is reported. Au-3MPS nanoparticles show a plasmon resonance at 520 nm, have a spherical morphology and average size of 7-10 nm. The total number of gold atoms was estimated to be about 10600, with a surface component of 8800 atoms and a number of thiol ligands of about 720, roughly one anchored thiol every 10 surface gold atoms. The drug-nanoparticle interaction occurs through the fluorine atom of DXM and Au(I) atoms on the gold nanoparticle surface. The 3MPS ligands closely pack apart each other to leave room for the DXM, that lies at the gold surface in an unusual, almost parallel feature. The loading efficiency of DXM on Au-3MPS was assessed in the range 70-80%, depending on the thiol content. Moreover, our studies confirmed the drug release of about 70% in 5 days. Thanks to their unique properties, i.e. high water solubility, small size and almost monodispersity, Au-3MPS display high potential in biotechnological and biomedical applications, mainly for the loading and release of water insoluble drugs.


Assuntos
Antineoplásicos Hormonais/química , Preparações de Ação Retardada/química , Dexametasona/química , Ouro/química , Nanopartículas Metálicas/química , Unitiol/química , Composição de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Tamanho da Partícula , Solubilidade , Ressonância de Plasmônio de Superfície , Água
11.
J Inorg Biochem ; 136: 99-106, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24367995

RESUMO

Meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercaptopropane-1-sulfonic acid (DMPS) are chelating agents which have been used clinically to treat patients suffering from Pb(2+) or Hg(2+) exposure. Cd(2+) is a related environmental pollutant that is of increasing public health concern due to a demonstrated dose-response between urinary Cd level and an increased risk of diabetes. However, therapeutically effective chelating agents which enhance the excretion of Cd(2+) from humans have yet to be identified. Here we present a structural characterization of complexes of DMSA and DMPS with Cd(2+) at physiological pH using a combination of X-ray absorption spectroscopy, size exclusion chromatography and density functional theory. The results indicate a complex chemistry in which multi-metallic forms are important, but are consistent with both DMPS and DMSA acting as true chelators, using two thiolates for DMPS and one thiolate and one carboxylate for DMSA.


Assuntos
Compostos de Cádmio/química , Succímero/química , Unitiol/química , Compostos de Cádmio/isolamento & purificação , Quelantes , Cromatografia em Gel , Complexos de Coordenação/química , Complexos de Coordenação/isolamento & purificação , Modelos Moleculares , Conformação Molecular , Soluções , Espectrofotometria Atômica , Espectroscopia por Absorção de Raios X
12.
Photochem Photobiol ; 89(1): 253-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22827592

RESUMO

The azide anion is often used as a physical quencher of singlet oxygen, the important active intermediate in photosensitized oxidation. An observed effect of azide on the rate of a reaction is considered an indication to the involvement of singlet oxygen. In most biological photosensitizations, the light-absorbing sensitizer is located in a membrane or in an intracellular organelle, whereas azide is water soluble. The quenching it causes relies on a physical encounter with singlet oxygen during the latter's short lifetime. This can happen either if azide penetrates into the membrane's lipid phase or if singlet oxygen is intercepted when diffusing in the aqueous phase. We demonstrate in this article the difference, in liposomes' suspension, between the effect of azide when using a water-soluble and membrane-bound chemical targets of singlet oxygen, whereas this difference does not exist when micelles are used. We explain the difference on the population of sensitizer and target in the liposome vs micelle. We also show the effect that exists on azide quenching of singlet oxygen by electrically charged lipids in liposomes. This is a result of the accumulation or dilution of azide in the debye layer near the membranes' surface, due to the surface Gouy-Chapman potential.


Assuntos
Azidas/química , Hematoporfirinas/química , Lipossomos/efeitos da radiação , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Ácidos Graxos Monoinsaturados/química , Concentração de Íons de Hidrogênio , Cinética , Lecitinas/química , Luz , Lipossomos/química , Micelas , Oxirredução , Compostos de Amônio Quaternário/química , Solubilidade , Eletricidade Estática , Suspensões/química , Unitiol/química , Água
13.
Anal Chim Acta ; 746: 47-52, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22975179

RESUMO

A recently developed methodology, which combines voltammetry, ITC, ESI-MS and several chemometric tools, has been applied for the first time to the study of As(III) complexes. The ligands considered, DMSA and DMPS, are commonly used to treat heavy metal poisoning. The study yields a reliable and consistent picture of the binding of As(III) by the chelating therapy agents DMSA and DMPS providing an unambiguous description of the stoichiometries of the complexes (ML(2), with the occasional appearance of ML in the case of DMSA), both ligands have stability constants of the same order, with a logß(2) of 9.2 and 9.8, respectively. These values confirm the potential efficiency of both ligands in the treatment of As(III) poisoning.


Assuntos
Arseniatos/química , Calorimetria/métodos , Quelantes/química , Succímero/química , Unitiol/química , Arseniatos/análise , Intoxicação por Arsênico/tratamento farmacológico , Quelantes/uso terapêutico , Técnicas Eletroquímicas , Intoxicação por Metais Pesados , Humanos , Análise dos Mínimos Quadrados , Metais Pesados/antagonistas & inibidores , Distribuição Normal , Intoxicação , Espectrometria de Massas por Ionização por Electrospray/métodos , Succímero/uso terapêutico , Unitiol/uso terapêutico
14.
Metallomics ; 4(9): 995-1003, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22820874

RESUMO

The exposure of various human populations to Cd(2+) is of increasing health concern. After its gastrointestinal absorption into the bloodstream, Cd(2+) binds to α(2)-macroglobulin and serum albumin. Although animal studies have demonstrated that meso-2,3-dimercaptosuccinic acid (DMSA) and diethylenetriamine pentaacetic acid (DTPA) can effectively mobilize Cd(2+) to urine and decrease the Cd concentrations of the kidneys, the liver and the brain, not much is known about the abstraction of Cd(2+) from blood plasma proteins. We prepared a stock of Cd(2+) spiked rabbit plasma (2.0 µg of Cd(2+)/mL) and analyzed aliquots by size exclusion chromatography coupled on-line to an inductively coupled plasma atomic emission spectrometer (SEC-ICP-AES) while simultaneously monitoring the emission lines of Ca, Cd, Cu, Fe, and Zn. After the addition of 0.33 mM, 0.66 mM or 0.99 mM of DMSA, DTPA, 2,3-dimercapto-1-propanesulfonic acid (DMPS) or N-acetyl-l-cysteine (NAC) to plasma aliquots, the obtained mixtures were analyzed by SEC-ICP-AES after 5 min and 30 min. None of the investigated compounds adversely affected the plasma distribution of Fe at all investigated doses. At 0.33 mM, DTPA was most effective at mobilizing plasma protein bound Cd(2+) to a ~5 kDa Cd-species (100% removal), followed by DMPS (94%), DMSA (83%) and NAC (3%). All investigated compounds also mobilized Zn(2+) from plasma proteins to ~5 kDa Zn-species (DTPA: 80% removal; DMPS: 63%; DMSA: 29% and NAC: 3%). The addition of DTPA resulted in the dose-dependent elution of a [Ca-DTPA](3-) complex. Based on these results, 0.33 mM DMSA represents the best compromise that can be achieved between maximizing the abstraction of Cd(2+) from plasma proteins (83%), while minimizing the mobilization of Zn(2+) from plasma proteins (29%), and avoiding the complexation of Ca(2+).


Assuntos
Proteínas Sanguíneas/metabolismo , Cádmio/metabolismo , Quelantes/metabolismo , Acetilcisteína/química , Acetilcisteína/metabolismo , Animais , Cálcio/metabolismo , Quelantes/química , Cromatografia em Gel , Humanos , Coelhos , Espectrofotometria Atômica , Succímero/química , Succímero/metabolismo , Unitiol/química , Unitiol/metabolismo , Zinco/metabolismo
15.
Chem Res Toxicol ; 25(9): 1825-38, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22667351

RESUMO

Within the body of this review, we provide updates on the mechanisms involved in the renal handling mercury (Hg) and the vicinal dithiol complexing/chelating agents, 2,3-bis(sulfanyl)propane-1-sulfonate (known formerly as 2,3-dimercaptopropane-1-sulfonate, DMPS) and meso-2,3-bis(sulfanyl)succinate (known formerly as meso-2,3-dimercaptosuccinate, DMSA), with a focus on the therapeutic effects of these dithiols following exposure to different chemical forms of Hg. We begin by reviewing briefly some of the chemical properties of Hg, with an emphasis on the high bonding affinity between mercuric ions and reduced sulfur atoms, principally those contained in protein and nonprotein thiols. A discussion is provided on the current body of knowledge pertaining to the handling of various mercuric species within the kidneys, focusing on the primary cellular targets that take up and are affected adversely by these species of Hg, namely, proximal tubular epithelial cells. Subsequently, we provide a brief update on the current knowledge on the handling of DMPS and DMSA in the kidneys. In particular, parallels are drawn between the mechanisms participating in the uptake of various thiol S-conjugates of Hg in proximal tubular cells and mechanisms by which DMPS and DMSA gain entry into these target epithelial cells. Finally, we discuss factors that permit DMPS and DMSA to bind intracellular mercuric ions and mechanisms transporting DMPS and DMSA S-conjugates of Hg out of proximal tubular epithelial cells into the luminal compartment of the nephron, and promoting urinary excretion.


Assuntos
Rim/metabolismo , Mercúrio/química , Succímero/química , Unitiol/química , Animais , Quelantes/química , Quelantes/metabolismo , Quelantes/uso terapêutico , Transportadores de Ácidos Dicarboxílicos/metabolismo , Humanos , Rim/química , Rim/enzimologia , Mercúrio/metabolismo , Mercúrio/urina , Intoxicação por Mercúrio/tratamento farmacológico , Transportadores de Ânions Orgânicos/metabolismo , Succímero/metabolismo , Succímero/uso terapêutico , Compostos de Sulfidrila/química , Unitiol/metabolismo , Unitiol/uso terapêutico , gama-Glutamiltransferase/metabolismo
16.
J Inorg Biochem ; 112: 49-58, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22546686

RESUMO

It has long been suggested that the essential and ubiquitous enzyme fructose 1,6-bisphosphate (FBP) aldolase could be a good drug target against bacteria and fungi, since lower organisms possess a metal-dependant (Class II) FBP aldolase, as opposed to higher organisms which possess a Schiff-base forming (Class I) FBP aldolase. We have tested the capacity of derivatives of the metal-chelating compound dipicolinic acid (DPA), as well a thiol-containing compound, to inhibit purified recombinant Class II FBP aldolases from Mycobacterium tuberculosis, Pseudomonas aeruginosa, Bacillus cereus, Bacillus anthracis, and from the Rice Blast causative agent Magnaporthe grisea. The aldolase from M. tuberculosis was the most sensitive to the metal-chelating inhibitors, with an IC(50) of 5.2 µM with 2,3-dimercaptopropanesulfonate (DMPS) and 28 µM with DPA. DMPS and the synthesized inhibitor 6-(phosphonomethyl)picolinic acid inhibited the enzyme in a time-dependent, competitive fashion, with second order rate constants of 273 and 270 M(-1) s(-1) respectively for the binding of these compounds to the M. tuberculosis aldolase's active site in the presence of the substrate FBP (K(M) 27.9 µM). The most potent first generation inhibitors were modeled into the active site of the M. tuberculosis aldolase structure, with results indicating that the metal chelators tested cannot bind the catalytic zinc in a bidentate fashion while it remains in its catalytic location, and that most enzyme-ligand interactions involve the phosphate binding pocket residues.


Assuntos
Quelantes/química , Inibidores Enzimáticos/química , Frutose-Bifosfato Aldolase/antagonistas & inibidores , Frutose-Bifosfato Aldolase/química , Sítios de Ligação , Ligação Competitiva , Quelantes/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Metais/química , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Conformação Proteica , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Unitiol/química , Zinco/química
17.
Eur Biophys J ; 40(5): 641-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21264465

RESUMO

Annexin A5 (AnxA5) binds to negatively charged phospholipid membranes in a Ca(2+) dependent manner. Several studies already demonstrate that Mg(2+) ions cannot induce the binding. In this paper, quartz crystal microbalance with dissipation monitoring (QCM-D), Brewster angle microscopy (BAM), polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) and molecular dynamics (MD) were performed to elucidate the high specificity of Ca(2+) versus Mg(2+) on AnxA5 binding to membrane models. In the presence of Ca(2+), AnxA5 showed a strong interaction with lipids, the protein is adsorbed mainly in α-helix under the DMPS monolayer, with an orientation of the α-helices axes slightly tilted with respect to the normal of the phospholipid monolayer as revealed by PMIRRAS. The Ca(2+) ions interact strongly with the phosphate group of the phospholipid monolayer. In the presence of Mg(2+), instead of Ca(2+), no interaction of AnxA5 with lipids was detected. Molecular dynamics simulations allow us to explain the high specificity of calcium. Ca(2+) ions are well exposed and surrounded by labile water molecules at the surface of the protein, which then favour their binding to the phosphate group of the membrane, explaining their specificity. To the contrary, Mg(2+) ions are embedded in the protein structure, with a smaller number of water molecules strongly bound. We conclude that the embedded Mg(2+) ions inside the AnxA5 structure are not able to link the protein to the phosphate group of the phospholipids for this reason.


Assuntos
Anexina A5/química , Anexina A5/metabolismo , Cálcio/farmacologia , Membrana Celular/metabolismo , Magnésio/farmacologia , Adsorção , Ar , Membrana Celular/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Unitiol/química , Unitiol/metabolismo , Água/química
18.
Arch Toxicol ; 85(7): 787-98, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21140132

RESUMO

As the number of nanoparticle-based products increase in the marketplace, there will be increased potential for human exposures to these engineered materials throughout the product life cycle. We currently lack sufficient data to understand or predict the inherent nanomaterial characteristics that drive nanomaterial-biological interactions and responses. In this study, we utilized the embryonic zebrafish (Danio rerio) model to investigate the importance of nanoparticle (NP) surface functionalization, in particular as it pertains to nanoparticle stability, on in vivo biological responses. This is a comparative study where two lead sulfide nanoparticles (PbS-NPs) with nearly identical core sizes, but functionalized with either sodium 3-mercaptopropanesulfonate (MT) or sodium 2,3-dimercaptopropanesulfonate (DT) ligand, were used. Developmental exposures and assessments revealed differential biological responses to these engineered nanoparticles. Exposures beginning at 6 h post fertilization (hpf) to MT-functionalized nanoparticles (PbS-MT) led to 100% mortality by 120 hpf while exposure to DT-functionalized nanoparticles (PbS-DT) produced less than a 5% incident in mortality at the same concentration. Exposure to the MT and DT ligands themselves did not produce adverse developmental effects when not coupled to the NP core. Following exposure, we confirmed that the embryos took up both PbS-MT and PbS-DT material using inductively coupled plasma-mass spectrometry (ICP-MS). The stability of the nanoparticles in the aqueous solution was also characterized. The nanoparticles decompose and precipitate upon exposure to air. Soluble lead ions were observed following nanoparticle precipitation and in greater concentration for the PbS-MT sample compared to the PbS-DT sample. These studies demonstrate that in vivo assessments can be effectively used to characterize the role of NP surface functionalization in predicting biological responses.


Assuntos
Ácido 3-Mercaptopropiônico/química , Ectogênese/efeitos dos fármacos , Chumbo/química , Chumbo/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Sulfetos/química , Sulfetos/toxicidade , Unitiol/química , Animais , Transporte Biológico , Precipitação Química , Relação Dose-Resposta a Droga , Embrião não Mamífero/química , Embrião não Mamífero/efeitos dos fármacos , Chumbo/análise , Chumbo/farmacocinética , Ligantes , Teste de Materiais/métodos , Nanopartículas Metálicas/ultraestrutura , Modelos Animais , Oxirredução , Tamanho da Partícula , Solubilidade , Sulfetos/farmacocinética , Propriedades de Superfície , Teratógenos/química , Teratógenos/farmacocinética , Teratógenos/toxicidade , Peixe-Zebra
19.
Eur Biophys J ; 39(12): 1637-47, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20798935

RESUMO

Excipients in the pharmaceutical formulation of oral drugs are notably employed to improve drug stability. However, they can affect drug absorption and bioavailability. Passive transport through intestinal cell walls is the main absorption mechanism of drugs and, thus, involves an interaction with the membrane lipids. Therefore in this work, the effect of the excipient NaHCO(3) on the interaction of the anticholesterolemic drug fluvastatin sodium (FS) with membrane phospholipids was investigated by (1)H NMR and FTIR spectroscopy. Sodium bicarbonate is often combined with fluvastatin for oral delivery to prevent its degradation. We have used model DMPC/DMPS membranes to mimic the phospholipid content of gut cell membranes. The results presented in this work show a 100% affinity of FS for the membrane phospholipids that is not modified by the presence of the excipient. However, NaHCO(3) is shown to change the interaction mechanism of the drug. According to our data, FS enters the DMPC/DMPS bilayer interface by interacting with the lipids' polar headgroups and burying its aromatic moieties into the apolar core. Moreover, lipid segregation takes place between the anionic and zwitterionic lipids in the membranes due to a preferential interaction of FS with phosphatidylserines. The excipient counteracts this favored interaction without affecting the drug affinity and location in the bilayer. This work illustrates that preferential interactions with lipids can be involved in passive drug permeation mechanisms and gives evidence of a possible nonpassive role of certain excipients in the interaction of drugs with membrane lipids.


Assuntos
Química Farmacêutica , Excipientes/química , Ácidos Graxos Monoinsaturados/metabolismo , Indóis/metabolismo , Fosfolipídeos/metabolismo , Bicarbonato de Sódio/farmacologia , Anticolesterolemiantes/química , Anticolesterolemiantes/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Ácidos Graxos Monoinsaturados/química , Fluvastatina , Indóis/química , Espectroscopia de Ressonância Magnética , Fosfolipídeos/química , Bicarbonato de Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Unitiol/química , Unitiol/metabolismo
20.
Biochim Biophys Acta ; 1798(10): 1969-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20603101

RESUMO

We have investigated the influence of the neurotoxic Alzheimer's disease peptide amyloid-beta (25-35) on the dynamics of phospholipid membranes by means of quasi-elastic neutron scattering in the picosecond time-scale. Samples of pure phospholipids (DMPC/DMPS) and samples with amyloid-beta (25-35) peptide included have been compared. With two different orientations of the samples the directional dependence of the dynamics was probed. The sample temperature was varied between 290K and 320K to cover both the gel phase and the liquid-crystalline phase of the lipid membranes. The model for describing the dynamics combines a long-range translational diffusion of the lipid molecules and a spatially restricted diffusive motion. Amyloid-beta (25-35) peptide affects significantly the ps-dynamics of oriented lipid membranes in different ways. It accelerates the lateral diffusion especially in the liquid-crystalline phase. This is very important for all kinds of protein-protein interactions which are enabled and strongly influenced by the lateral diffusion such as signal and energy transducing cascades. Amyloid-beta (25-35) peptide also increases the local lipid mobility as probed by variations of the vibrational motions with a larger effect in the out-of-plane direction. Thus, the insertion of amyloid-beta (25-35) peptide changes not only the structure of phospholipid membranes as previously demonstrated by us employing neutron diffraction (disordering effect on the mosaicity of the lipid bilayer system) but also the dynamics inside the membranes. The amyloid-beta (25-35) peptide induced membrane alteration even at only 3mol% might be involved in the pathology of Alzheimer's disease as well as be a clue in early diagnosis and therapy.


Assuntos
Peptídeos beta-Amiloides/química , Bicamadas Lipídicas/química , Fragmentos de Peptídeos/química , Fosfolipídeos/química , Algoritmos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Humanos , Cinética , Bicamadas Lipídicas/metabolismo , Modelos Químicos , Modelos Moleculares , Difração de Nêutrons/métodos , Fragmentos de Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Temperatura , Fatores de Tempo , Unitiol/química , Unitiol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...